
1

Programming in C

2

Looping Subtasks
 We will examine some basic algorithms that use the

while and if constructs. These subtasks include

 Reading unknown quantity of data

 Counting things

 Accumulating (summing) totals

 Searching for specific values

 Finding extreme values

3

Looping Subtasks
 Examples will be based upon common models:

 Priming Read or Input Count

 The type of state that must be maintained by the program
depends on the nature of the problem and can include:
 indicator (true/false) variables

 counter variables

 sum variables

 previous input value variables

Initialize program state

Read the first value (priming read)

While (data exists)

 update program state as needed

 read next value(s)

Output final state

Initialize program state

While (input count OK)

 update program state as needed

Output final state

4

Counter-Controlled Repetition
 Number of items is known before loop

 Suppose the problem becomes:

 Develop a class-averaging program that will process an
arbitrary number of grade scores each time the program
is run.

5

Sentinel-Controlled Repetition
 One way to handle an arbitrary number of

input values is to have the user enter a
special value to indicate the end of input.

 Such a value is a sentinel value.
 Indicates end of valid input
 Loop ends when sentinel value is read
 Must choose a sentinel value that cannot be

confused with a regular input value.

25
43
67
96
12
58
44
-1

6

 For sentinel-controlled loops
1. Read before the loop (priming read)

2. Test input to make sure it is not the sentinel value

3. Process

4. Read again at the bottom of the loop

 Use the following model:

read before entering the loop

while (value_read != SENTINEL)

{

 // process

 …

 read at bottom of loop

 (before entering loop again)

}

Sentinel-Controlled Priming Read

7

Sentinel-Controlled Loop
using Priming Read

25
43
67
96
12
58
44
-1

8

Sentinel-Controlled Loop
using Input Count

25
43
67
96
12
58
44
-1

9

Example of sentinel-controlled loop
25 43
67 96
12 58
44 99
-1

10

Processing an arbitrary number of pairs

 Sometimes it is not possible
to find a sentinel value

 We can use

 End-of-input controlled loops

 Uses return from scanf

 Can be fooled by invalid data

 End-of-file controlled loops

 Uses function feof

11

End of Data
 Hardware & Software

End-Of-File

 Keyboard
 Ctrl-d (Does not work on Mac!)

25 43
67 96
12 58
44 99
Ctrl-d The End Is Here!

12

Redirection
 Redirection: Read / Write to actual file

 stdin: cmd < input-file
 Ex: ./a.out < nums.txt

 stdout: cmd > output-file
 Ex: ./a.out > report.txt

 stdout (append): cmd >> output-file
 Ex: ./a.out >> report.txt

 Both: cmd < input-file > output-file
 Ex: ./a.out < nums.txt > report.txt

 Leave out prompts when designing for redirection

13

Example: End-of-input controlled loop
using items read & priming read

25
43
67
96
12
58
44

14

Example: End-of-input controlled loop
using just items read

25
43
67
96
12
58
44

15

Example: End-of-input controlled loop
using number of items read

25 43
67 96
12 58
44 99

16

Detecting End-of-File
 Function: feof

 Syntax: feof(file-pointer)

 Returns true or false

 Standard input: feof(stdin)

 Use in a while loop -
while (!feof(stdin))

17

Example: End-of-file controlled loop

End of File

25
43
67
96
12
58
44

18

Example: end-of-file controlled loop
25 43
67 96
12 58
44 99

End of File

19

Looping Subtask: Counting
 Example: Find the number of scores in a file

 Here the program state that must be maintained
is a counter that maintains the number of scores
that have been read so far.

 Steps

 Declare an int variable for the count

 Initialize the count to zero

 Increment the count
in the body of the loop

20

Looping Subtask: Counting

21

Looping Subtask: Counting

22

Looping Subtask: Counting

23

Looping Subtask: Counting

24

Counting Example
 What if we want to print the number of passing scores

(scores >= 70)?

 We need a mechanism that allows us to count only if the
score is greater than or equal to 70

 Use if stmt

25

Looping Subtask: Counting

26

Counting Example
 What if we want to print the number of passing scores

(scores >= 70) and the number of failing scores?

 Use if -else

27

Looping Subtask: Counting

28

Looping Subtask:
Accumulation (Summing)

 The state that must be maintained is the sum of all
values that have been seen so far.

 Declare a variable to hold the sum (accumulator)

 Initialize the sum to zero

 In the body of the loop, add the new value to the sum

29

Accumulating Example

30

Counting & Accumulating Example
 Problem

 A class of ten students took a quiz.

 The grades (integers in the range 0 to 100) for this quiz
are available to you.

 Determine the class average on the quiz.

 Hint: Requirements for an average
 Count of number of items
 Sum of the items

31

Counting & Accumulating Example
 Pseudocode:

Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten
 Input the next grade
 Add the grade into the total
 Add one to the grade counter

Set the class average to the total divided by ten

Print the class average

32

Looping Subtasks: Searching

 Need a variable to indicate whether or not the program
has encountered the target value, call it found

 Initialize found to 0 (false)

 Each time through the loop, check to see if the current
value equals the target value

 If so, assign 1 to found

33

Searching Exercise
Write a C program that

1. Reads a target score at the beginning of the file

2. Reads a set of scores and determines if the target
score is in the set of scores

3. If found prints
 Target ## was found
otherwise prints
 Target ## was not found

34

Looping Subtasks: Searching

35

Searching Improvement
 Stop searching if target has been found

36

96 is the max
12 is the min

Looping Subtasks: Finding Extremes
 Finding Extreme Values (e.g. maximum, minimum)

 Need a variable (such as maxValue) to remember the
most extreme value encountered so far

25
43
67
96
12
58
44

37

Looping Subtasks: Finding Extremes
 Finding Extreme Values (e.g. maximum, minimum)

 Initialize the maxValue (minValue) to some value
 maxValue: Lower value than any data

 minValue: Higher value than any data

 Or for both: The first data value

 For each data item
 Compare the current value to maxValue (or minValue)

 If the current value is > maxValue (< minValue), replace maxValue
(minValue) with the current value.

38

Extremes Exercise
Write a C program that

1. Reads a set of scores from a file

2. Determines and prints the maximum score

39

Looping Subtasks: Finding Extremes

40

Programming in C

T H E E N D

