

Looping Subtasks

We will examine some basic algorithms that use the
while and if constructs. These subtasks include

e Reading unknown quantity of data
e Counting things

e Accumulating (summing) totals

e Searching for specific values

* Finding extreme values

Looping Subtasks

Examples will be based upon common models:

Priming Read or Input Count
Initialize program state Initialize program state
Read the first value (priming read) While (input count OK)
While (data exists) update program state as needed
update program state as needed Output final state

read next value(s)

Output final state

The type of state that must be maintained by the program

depends on the nature of the problem and can include:
* indicator (true/false) variables

e counter variables
e sum variables

e previous input value variables

Counter-Controlled Repetition

Number of items is known before loop

'/ Read and print 5 test =scores
int count, =core;
for (count = 1; count <= 5; count++) {
scanf ("F4d", &=score);
printf ("Score %d i= %d4d\n", count, =score):;

Suppose the problem becomes:

Develop a class-averaging program that will process an
arbitrary number of grade scores each time the program
Is run.

Sentinel-Controlled Repetition

One way to handle an arbitrary number of
input values is to have the user enter a
special value to indicate the end of input.

Such a value is a sentinel value.
* Indicates end of valid input
* Loop ends when sentinel value is read

e Must choose a sentinel value that cannot be
confused with a regular input value.

25
43
67
96
12
58
44
-1

Sentinel-Controlled Priming Read

For sentinel-controlled loops
<—— 1. Read before the loop (priming read)

2. Test input to make sure it is not the sentinel value |
3. Process -
4. Read again at the bottom of the Ioop N\ e
Use the following model:

‘——— read before entering the loop
— > while (value read !'= SENTINEL)

{

// process

read at bottom of loop
(before entering loop again)

0

e
Sentinel-Controlled Loop

using Priming Read

25
43
67
96
12
58

44 _sentinel
-1

/f BRead and print numbers using priming read

int num;
gcanf (":d4d", &num) ; /f Priming read
while (num '= -1) { /f Bentinal is -1

printf ("¥d\n", num) ;
scanf (":d4d", &num); /' Read another number

0

e
Sentinel-Controlled Loop

using Input Count

25
43
67
96
12
58

44 _sentinel
-1

/f Read and print numbers using input count

int inputCount:; S Items read
int num;
while (scanf("3*d", &num) = 1 && num = -1) {

/S Bentinal is -1
printf ("%d\n", num);

0

0

Example of sentinel-controlled loop

2543
67 96
12 58
44 99

1 e _sentinel

/S BRead pairs and print sums
int numl, numZ2, =Sum;

scanf (":d4", &numl): S Priming read
while (numl '= -1) { S Bentinal i=s -1
scanf (":d4d", &num?): S Bead second number

sum = numl + numZ;
printf("%d + %2d = %d\n", numl, numZ, =um);
scanf (":d4", &numl): S Bead another first number

Processing an arbitrary number of pairs

Sometimes it is not possible
to find a sentinel value

We can use

e End-of-input controlled loops
Uses return from scanf
Can be fooled by invalid data

e End-of-file controlled loops

Uses function feof

End of Data

= Hardware & Software
End-Of-File
e Keyboard

Ctrl-d (Does not work on Mac!)

4499
Ctrl-d < The End Is Here!

Redirection « Ze

= S .

Redirection: Read / Write to actual file

e stdin:cmd < input-file L
Ex: ./a.out < nums. txt _—

e stdout: cmd > output-£file
Ex: ./a.out > report.txt

e stdout (append): cmd >> output-file
Ex: ./a.out >> report.txt

e Both:cmd < input-file > output-file
Ex: ./a.out < nums.txt > report.txt

* Leave out prompts when designing for redirection

©

Example: End-of-input controlled loop

using items read & priming read

25
43
67
96
12

58
44

S/ BRead and print using items read & priming read

int inputCount: S Items read
int num;
intputCount = scanf (":d", &num); S/ Priming read
while ({(intputCount == 1) { Jf Check count
printf ("%d\n", num)
inputCount = scanf ("%d4d", &num); /,/ Bead another number
H

™

/

e

Example: End-of-input controlled loop
using just items read

S/ BRead and print using just items read
int num;

while (scanf("%d", &num) == 1) { J/ Check count
printf ("%¥d\n", num)

H

ffor

while (=scanf("%d", &num) '= EOQF) { J/f Check for EOF
printf ("$d\n", num) ;

}

\

Example: End-of-input controlled loop

™

Sf Bead pairs and print sums using items read
int numl, numZ, sum;

while (Scanf("%d %d4d", &numl, &numZ) == 2) { fSf Check items read

sum = numl 4+ numd;
printf("%d + %d = Td\n", numl, numZ, =sum):;

Detecting End-of-File

Function: feof

e Syntax: feof (file-pointer)
Returns true or false
Standard input: feof (stdin)

e Use in a while loop -
while (!feof (stdin))

f/f Read and print numbers using EOF

int num;
scanf (":d4d", &num): /Y Priming read
while (!'feof(stdin)) { ff Check for EOF
printf ("3d\n", num)
scanf (":d4", &num) ; S Bead another number
H

™

0

Example: end-of-file controlled loop

2543
67 96

12 58
44 99

/S BRead pairs and print sums using end-of-file

int numl, numZ2, =um;

gcanf (":d4d", &numl) ; f/f Priming read
while (!feof(stdin)) { ff Check for EOF
scanf (":d4d", &num?) ; /f BRead second number

sum = numl + numZ;
printf("%d + %4 = Td\n", numl, numZ, sum);
scanf (":d4d", &numl):; /' BRead another first number

™

Looping Subtask: Counting

Example: Find the number of scores in a file

* Here the program state that must be maintained
is @ counter that maintains the number of scores
that have been read so far.

Steps
e Declare an int variable for the count
e Initialize the count to zero

* Increment the count
in the body of the loop

O

Looping Subtask: Counting

[/ Print score count w/priming read
int scoreCount; ff counter
int score;

scoreCount = @; /f initialize counter

printf{"Enter first score or ctrl-d to end: ");

scanf("%d", &score);

while (!feof(stdin)) {
scoreCount++; ff increment counter
scanft("%d", &score);

printf("Enter next score or ctrl-d to end: ");

¥

printf("Score count is ¥d\n", scoreCount);

0

Looping Subtask: Counting

ff Print score count w/scanf in while
int scoreCount; /f counter
int score;

scoreCount = @8; ff initialize counter

printf(“"Enter first score or ctrl-d to end: ");
while (scanf({"%d", &score)} == 1) {
scoreCount++; ff increment counter
printf{"Enter next score or ctrl-d to end: ");

¥

printf("Score count is %d\n", scoreCount);

Looping Subtask: Counting

ff Print score count w/for
int scoreCount; J/f counter
int score;

scoreCount = @; ff initialize counter
printf(“"Enter first score or ctrl-d to end: ");
for (scoreCount = 8; scanf("%d", &score) == 1, scoreCount++)

printf("Enter next score or ctrl-d to end: ");

printf("Score count is %d\n", scoreCount);

o

Looping Subtask: Counting

f// Print score count w/for & no prompts
int scoreCount; ff counter
int score;

scoreCount = 8; Jf initialize counter
for (scoreCount = 8; scanf("%d", &score) == 1, scoreCount++)
SFnull*S 3

printf("Score count is %d\n", scoreCount);

Counting Example

What if we want to print the number of passing scores

(scores >= 70)?

* We need a mechanism that allows us to count only if the
score is greater than or equal to 70

e Use if stmt

Looping Subtask: Counting

/f Print passing sScore count
int passCount; /f passing counter

int =score:

passCount = 0; ff initialize counter

scanf ("Fd", &=score);
whnile (!'feof(=stdin)) {
if (=score >= T0)
passCount++; S increment pass counter
scanf ("Fd", &=score);

printf ("Passing score count is %d4d\n", passCount):;

Counting Example

What if we want to print the number of passing scores
(scores >= 70) and the number of failing scores?

e Use if -else

Looping Subtask: Counting

/f Print passing and failing sScore count

int passCount; /' passing counter
int failCount: S/ failing counter
int score;

passCount = 0; SY initialize counters
failCount = 0;

scanf (":d4d", E&score);
while (!'feof(=stdin)) {
if (=core >= T0)

passCount++; S/ increment pass counter
gelse
failCount++; S/ increment fail counter

scanf ("¥d", &score);

printf ("Passing score count is ¥d\n", passCount):
printf ("Failing score count iz %d\n", failCount):

Looping Subtask:
Accumulation (Summing)

The state that must be maintained is the sum of all
values that have been seen so far.

* Declare a variable to hold the sum (accumulator)
* Initialize the sum to zero
* In the body of the loop, add the new value to the sum

Accumulating Example

S/ Print =core sum
int scoreSum: J/ total accumulator
int score:;

scoreSum = 0; J /O dnmitialize total

scanf ("Fd4d", &=score);

while (!'feof(=stdin)) {
scoreSum += sScore; /f add score to total
scanf ("£d", &=score);

printf ("Score total i=s %£d\n", scoreSum);

Counting & Accumulating Example

Problem
* A class of ten students took a quiz.

» The grades (integers in the range 0 to 100) for this quiz
are available to you.

» Determine the class average on the quiz.

Hint: Requirements for an average
e Count of number of items
e Sum of the items

Counting & Accumulating Example

Pseudocode:
Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade

Add one to the grade counter
Set the class average to the total divided by ten
Print the class average

Add the grade into the total EX(ELLEN‘

i3

Need a variable to indicate whether or not the program
has encountered the target value, call it found

Initialize found to O (false)

Each time through the loop, check to see if the current
value equals the target value

* If so, assign 1 to found

Searching Exercise

Write a C program that
Reads a target score at the beginning of the file

Reads a set of scores and determines if the target
score is in the set of scores

If found prints
Target ## was found

otherwise prints
Target ## was not found

Looping Subtasks: Searching

// Determine if target score is found
int score, target;

int found = @; /{ found false

scanf("%d", &target);

scant("%d", &score);
while (!feof(stdin)) {
if (score == target)
found = 1; Jf found
scanf("%d", &score);

true

¥

it (found)

printf{"Target ¥d was found\n", target);
else

printf{"Target %d was not foundin™, target);

©

Searching Improvement

Stop searching if target has been found

scanf("%d", &score);
while (!feof(stdin) && !found) {
// stop if EOF or target found
if (score == target)
found = 1; ff found = true
scanft("%d", &score);

0

Looping Subtasks: Finding Extremes

Finding Extreme Values (e.g. maximum, minimum)

* Need a variable (such as maxValue) to remember the
most extreme value encountered so far

25
43 96 is the max

67 12 is the min

96
12
58
44

Looping Subtasks: Finding Extremes

Finding Extreme Values (e.g. maximum, minimum)

* |nitialize the maxValue (minValue) to some value
maxValue: Lower value than any data
minValue: Higher value than any data
Or for both: The first data value

e For each data item

» Compare the current value to maxValue (or minValue)

> If the current value is > maxValue (< minValue), replace maxValue
(minValue) with the current value.

Extremes Exercise

Write a C program that
Reads a set of scores from a file
Determines and prints the maximum score

0

Looping Subtasks: Finding Extremes

S/ Determine maximum sScore
int score, maxScore;

scanf ("¥d", &score);

maxScore = score: SO dnitialize max
wnile (!'feof(=ztdin)) {
if (score > maxScore)
maxScore = =core: /S reset max

gcanf ("Ed4d", &=score);
}

printf ("Maximum score is Ed\n", maxScore):

Programming in C

* 4 Looping Subtasks

