
1

Programming in C

main

Level 2 Level 2

Level 3 Level 3

Level 2

2

Programmer-Defined Functions
 Modularize with building blocks of programs

 Divide and Conquer
 Construct a program from smaller pieces or components

 Place smaller pieces into functions

 Pieces are more manageable than one big program

 Makes other functions smaller

 Pieces can be independently implemented and tested

3

Programmer-Defined Functions
 Readability

 Function name should indicate operations performed

 Reuse

 Functions may be used multiple times in same program

 Functions may be used in other programs

4

Components of Function Use
 Three steps to using functions

1. Function declaration/prototype

 If not defined before use

2. Function definition

3. Function call

 Either prototype or definition must come first

 Prototype and/or definitions can go in either

 Same file as main()

 Separate file so other programs can also use it

 #include

5

Program Function Definition Structure
 main first (preferred)

 Top down design
 Some prototypes required

 Complete prototyping allows
function definition in any
order

 main is last – lowest level
functions first
 Bottom up design
 Prototypes not required

 main in the middle
 Confusing: Do not do!

main

Level 2 Level 2

Level 3 Level 3

Level 2

main

Level 2 Level 2

Level 3 Level 3

Level 2

6

1. Function Declaration/Prototype
 An ‘informational’ declaration for compiler

 Tells compiler how to interpret calls

 Syntax:

 <return_type> FnName(<formal-parameter-list>);

 Formal parameter syntax:

 <data_type> Parameter-Name

 Example:

7

Function Declaration/Prototype
 Placed before any calls

 Generally above all functions in global space

 May be placed in declaration space of calling function

 Example

8

Alternative Function Declaration
 Function declaration is 'information' for compiler, so

 Compiler only needs to know:
 Return type

 Function name

 Parameter list

 Formal parameter names not needed but help readability

 Example

9

2. Function Definition
 Actual implementation/code for what function does

 Just like implementing function main()

 General format – header & basic block:

<return-type> fn-name (parameter-list)

 basic block

 Example:

header

10

Return Statements
 Syntax: return return-value-expression

 Two actions

 Sets return value

 Transfers control back to 'calling' function

 Typically the last statement in function definition

 Good programming practice

 Course requirement

11

3. Function Call
 Using function name transfers control to function

1. Values are passed through parameters

2. Statements within function are executed

3. Control continues after the call

 For value-returning functions, either

 Store the value for later use

 Use the value returned without storing

 Throw away return value

12

Parameters (Arguments)
 Formal parameters/arguments

 In function declaration

 In function definition's header

 'Placeholders' for data sent in

 'Variable name' used to refer to data in definition of
function

 Actual parameters/arguments

 In function call

13

Parameter vs. Argument
 Names used interchangeably

 Technically parameter is 'formal' piece
while argument is 'actual' piece

Argument! Parameter!

14

Functions Calling Functions
 We're already doing this!

 main() IS a function calling printf!

 Only requirement:

 Function's declaration or definition must appear first

 Common for functions to call many other functions

 Function can call itself  Recursion

15

Declaring Void Functions
 Similar to functions returning a value

 Return type specified as 'void'

 Example prototype:

 Return-type is 'void'

16

Declaring Void Functions
 Nothing is returned

 Void functions cannot have return statement with an
expression
 Will return at end of function

 Non-void functions must have return statement with an
expression

 Example definition:

17

Calling Void Functions
 From some other function, like main():

 Cannot be used where a value is required

 Cannot be assigned to a variable,
since no value returned

18

Function documentation
 Used to aid in program maintenance

 Comments at declaration or definition

 Purpose of function

 Preconditions / Parameters

 Postcondition / Return

19

main(): ‘Special’
 Recall: main() IS a function

 'Special'

 It is the first function executed

 Called by operating system or run-time system

 Can return value to operating system
 Value can be tested in command scripts

 Tradition holds it should return an int

 Zero indicates normal ending of program

20

Scope of Identifier Names
 Region of a program where identifier is visible

 Begins at definition within block

 Ends at end of block

 Local variables

 Name given to variables defined within function block

 Can have different local variables with same name
declared in different functions

 Cannot have duplicate local names within a function

21

Scope Rules
 Local variables preferred

 Maintain individual control over data

 Need to know basis (Hidden)

 Functions should declare whatever local data
needed to 'do their job'

22

Global Scope
 Names declared 'outside' function bodies

 Global to all functions in that file

 Global declarations typical for constants:

 Declare globally so all functions have scope, can use

23

Global Constants and Global Variables

 Global variables?

 Possible, but SELDOM-USED

 Better alternative is to use parameters

 Dangerous: no control over usage!

 We do not use global variables in this class!

24

Block Scope
 Declare data inside nested blocks

 Has 'block-scope'
 Note: All function definitions are blocks!

25

Lifetime
 How long does it last

 Allocation  Deallocation

 Normally variables are allocated when defined

 Normally variables are deallocated at the end of block

26

Static Lifetime
 Variable definition modifier keyword: static

 Static variables are only allocated once

 Static variables are not deallocated until program ends

27

Programming in C

T H E E N D

