
1

Programming in C

2

Pointer Variable
 A variable that stores a memory address

 Allows C programs to simulate call-by-reference
 Allows a programmer to create and manipulate dynamic

data structures

 Must be defined before it can be used
 Should be initialized to NULL or valid address

3

Declaring Pointers

Declaration of pointers

 <type> *variable

 <type> *variable = initial-value

Examples:

4

Pointers
 A pointer variable has two associated values:

 Direct value
 address of another memory cell

 Referenced by using the variable name

 Indirect value
 value of the memory cell whose address is the pointer's

direct value.

 Referenced by using the indirection operator *

5

Pointer Operators
 Come before a variable name

 * operator
 Indirection operator or dereferencing operator

 Returns a synonym, alias or nickname to which its operand points

 & operator
 Address of operator

 Returns the address of its operand

6

Pointer Variables
 One way to store a value in a pointer variable

is to use the & operator

 The address of count is stored in countPtr

 We say, countPtr points to count

7

Pointer Variables
 Assume count will be stored in memory at location

700 and countPtr will be stored at location 300

causes 5 to be stored in count

causes the address of count to be stored in countPtr

8

Pointer Variables
We represent this graphically as

9

Pointer Variables
 The indirection / dereferencing operator is *

stores the value 10 in the address pointed to by countPtr

10

Pointer Variables
 The character * is used in two ways:

1. To declare that a variable is a pointer
 Pre-pending a variable with a * in a declaration declares that the

variable will be a pointer to the indicated type instead of a
regular variable of that type

2. To access the location pointed to by a pointer
 Pre-pending a variable with a * in an expression indicates the value in

the location pointed to by the address stored in the variable

11

Simulating By Reference
 Invoked function uses * in formal parameters

 Invoking function uses & in actual parameters

12

Pointer Variables and Arrays
 Given

 The compiler will know how many bytes to copy into the
memory location pointed to by xPtr

 Defining the type that the pointer points to permits a
number of other interesting ways a compiler can
interpret code

13

Pointer Variables and Arrays
 Consider a block in memory consisting of ten

integers of 4 bytes in a row at location 10010

 Now, let's say we point an integer pointer aPtr at
the first of these integers

 What happens when we write
 ?

14

Pointer Variables and Arrays
 Because the compiler "knows"

 This is a pointer (i.e. its value is an address)

 That it points to an integer of length 4 at location 100

 Instead of 1, adds 4 to aPtr

 Now aPtr "points to" the next integer at location 104

 Same for: aPtr+=1, aPtr++, and ++aPtr

15

Pointer Variables and Arrays
 Since a block of 10 integers located contiguously

in memory is, by definition, an array of integers,
this brings up an interesting relationship between
arrays and pointers

16

Pointer Variables and Arrays
 Consider this array allocated at location 200

 We have an array containing 10 integers

 We refer to each of these integers by means of a
subscript to scores

 Using scores[0] through scores[9]

17

Pointer Variables and Arrays
 The name of an array and the address of the first

element in the array represent the same thing

 Consequently, we could alternatively access them
via a pointer:

18

Pointer Variables and Arrays
 The name of an array is a pointer constant to the

first element of the array
 So, we could also use :

19

Pointer Arithmetic and Arrays
 If scorePtr is pointing to a specific element in the

array and n is an integer,
 scorePtr + n
is the pointer value n elements away

 We can access elements of the array either using
the array notation or pointer notation
 If scorePtr points to the first element, the following two

expressions are equivalent:

 scores[n] Array notation

 *(scorePtr + n) Pointer notation

20

Pointers and
Dynamic Allocation of Memory

 So far, we have always allocated memory for
variables that are located on the stack
 Size of such variables must be known at compile time

 Sometimes convenient to allocate memory at run
time
 System maintains a second storage area called the heap
 Functions calloc and malloc allocate memory as needed

of size needed

21

Pointers and
Dynamic Allocation of Memory

1. Use allocating function (such as malloc(),
calloc(), etc.)

 Returns void pointer

 void * indicates a pointer to untyped memory

 Will have to cast the returned value to the specific type needed

2. Use memory through the pointer notation

3. Release allocated space when no longer needed,
so that it can be reused

22

Pointers and
Dynamic Allocation of Memory: calloc

 calloc
 Used to dynamically create an array in the heap
 Contiguous allocation

 Initialized to binary zeros

 Must

 Takes two arguments
1. Number of array elements

2. Amount of memory required for one element

 Use sizeof function / operator

 Returns
 Void pointer if successful

 NULL if unsuccessful

23

Pointers and
Dynamic Allocation of Memory: calloc

 Example 1: String

 Example 2: Integers

24

Pointers and
Dynamic Allocation of Memory: malloc

 malloc
 Used to dynamically get memory from heap
 Contiguous allocation

 No initialization

 Must

 Takes one argument
 Total amount of memory required

 Returns
 Void pointer if successful

 NULL if unsuccessful

25

Pointers and
Dynamic Allocation of Memory: malloc

 Example 1: String

 Example 2: Integers

26

Pointers and
Dynamic Allocation of Memory: free

 free
 Used to dynamically release memory back to heap
 Contiguous deallocation
 Must

 Takes one argument
 Pointer to beginning of allocated memory

 Good idea to also NULL pointer if reusing

27

Pointers and
Dynamic Allocation of Memory: free

 Example 2 with free

28

Programming in C

T H E E N D

