
1

Programming in C

2

Pointer Variable
 A variable that stores a memory address

 Allows C programs to simulate call-by-reference
 Allows a programmer to create and manipulate dynamic

data structures

 Must be defined before it can be used
 Should be initialized to NULL or valid address

3

Declaring Pointers

Declaration of pointers

 <type> *variable

 <type> *variable = initial-value

Examples:

4

Pointers
 A pointer variable has two associated values:

 Direct value
 address of another memory cell

 Referenced by using the variable name

 Indirect value
 value of the memory cell whose address is the pointer's

direct value.

 Referenced by using the indirection operator *

5

Pointer Operators
 Come before a variable name

 * operator
 Indirection operator or dereferencing operator

 Returns a synonym, alias or nickname to which its operand points

 & operator
 Address of operator

 Returns the address of its operand

6

Pointer Variables
 One way to store a value in a pointer variable

is to use the & operator

 The address of count is stored in countPtr

 We say, countPtr points to count

7

Pointer Variables
 Assume count will be stored in memory at location

700 and countPtr will be stored at location 300


causes 5 to be stored in count


causes the address of count to be stored in countPtr

8

Pointer Variables
We represent this graphically as

9

Pointer Variables
 The indirection / dereferencing operator is *


stores the value 10 in the address pointed to by countPtr

10

Pointer Variables
 The character * is used in two ways:

1. To declare that a variable is a pointer
 Pre-pending a variable with a * in a declaration declares that the

variable will be a pointer to the indicated type instead of a
regular variable of that type

2. To access the location pointed to by a pointer
 Pre-pending a variable with a * in an expression indicates the value in

the location pointed to by the address stored in the variable

11

Simulating By Reference
 Invoked function uses * in formal parameters

 Invoking function uses & in actual parameters

12

Pointer Variables and Arrays
 Given

 The compiler will know how many bytes to copy into the
memory location pointed to by xPtr

 Defining the type that the pointer points to permits a
number of other interesting ways a compiler can
interpret code

13

Pointer Variables and Arrays
 Consider a block in memory consisting of ten

integers of 4 bytes in a row at location 10010

 Now, let's say we point an integer pointer aPtr at
the first of these integers

 What happens when we write
 ?

14

Pointer Variables and Arrays
 Because the compiler "knows"

 This is a pointer (i.e. its value is an address)

 That it points to an integer of length 4 at location 100

 Instead of 1, adds 4 to aPtr

 Now aPtr "points to" the next integer at location 104

 Same for: aPtr+=1, aPtr++, and ++aPtr

15

Pointer Variables and Arrays
 Since a block of 10 integers located contiguously

in memory is, by definition, an array of integers,
this brings up an interesting relationship between
arrays and pointers

16

Pointer Variables and Arrays
 Consider this array allocated at location 200

 We have an array containing 10 integers

 We refer to each of these integers by means of a
subscript to scores

 Using scores[0] through scores[9]

17

Pointer Variables and Arrays
 The name of an array and the address of the first

element in the array represent the same thing

 Consequently, we could alternatively access them
via a pointer:

18

Pointer Variables and Arrays
 The name of an array is a pointer constant to the

first element of the array
 So, we could also use :

19

Pointer Arithmetic and Arrays
 If scorePtr is pointing to a specific element in the

array and n is an integer,
 scorePtr + n
is the pointer value n elements away

 We can access elements of the array either using
the array notation or pointer notation
 If scorePtr points to the first element, the following two

expressions are equivalent:

 scores[n] Array notation

 *(scorePtr + n) Pointer notation

20

Pointers and
Dynamic Allocation of Memory

 So far, we have always allocated memory for
variables that are located on the stack
 Size of such variables must be known at compile time

 Sometimes convenient to allocate memory at run
time
 System maintains a second storage area called the heap
 Functions calloc and malloc allocate memory as needed

of size needed

21

Pointers and
Dynamic Allocation of Memory

1. Use allocating function (such as malloc(),
calloc(), etc.)

 Returns void pointer

 void * indicates a pointer to untyped memory

 Will have to cast the returned value to the specific type needed

2. Use memory through the pointer notation

3. Release allocated space when no longer needed,
so that it can be reused

22

Pointers and
Dynamic Allocation of Memory: calloc

 calloc
 Used to dynamically create an array in the heap
 Contiguous allocation

 Initialized to binary zeros

 Must

 Takes two arguments
1. Number of array elements

2. Amount of memory required for one element

 Use sizeof function / operator

 Returns
 Void pointer if successful

 NULL if unsuccessful

23

Pointers and
Dynamic Allocation of Memory: calloc

 Example 1: String

 Example 2: Integers

24

Pointers and
Dynamic Allocation of Memory: malloc

 malloc
 Used to dynamically get memory from heap
 Contiguous allocation

 No initialization

 Must

 Takes one argument
 Total amount of memory required

 Returns
 Void pointer if successful

 NULL if unsuccessful

25

Pointers and
Dynamic Allocation of Memory: malloc

 Example 1: String

 Example 2: Integers

26

Pointers and
Dynamic Allocation of Memory: free

 free
 Used to dynamically release memory back to heap
 Contiguous deallocation
 Must

 Takes one argument
 Pointer to beginning of allocated memory

 Good idea to also NULL pointer if reusing

27

Pointers and
Dynamic Allocation of Memory: free

 Example 2 with free

28

Programming in C

T H E E N D

